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ABSTRACT

The Strategic Detense Initiative has generated new
interest 1n the development of more stable space structures.
This 1nterest has i1ncreased the need for more detailed
knowledge of the behavior of engineering structures under
dynamic loading. lnterests lie 1n decreasing the amount of
vibration by both passively and actively damping the
structure. A means ex1sts to passively damp structures by
friction damping resulting from relative slip between joint
interfaces. lt may be feasible to i1ncrease the damping 1n a
structure by allowing more friction damping than 1s normal
and thereby controlling the vibration response.

This study incorporates friction damping 1n a one-
dimensional model. Finite element techniques are used to
accaomplish the numerical analysis. A clamped-clamped beam
1s used as the physical model. The mid-point of the two
element beam is allowed to slip 1n rotation, but not ain
translation. Because the one-dimensional program cannot
handle rotations at continous nodes, the beam 18 modeled by
symmetry about the jJoint and a cantilever beam with an
applied end moment is studied.

Kesults for the response of a beam 1n vibration are
presented showing displacement of the joint, relative
rotation at the joint, and relative angular velocity at the

Joint; all versus time. Various clamping pressures and
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initial loads are explored. Diagrams ot the beam shape vs. ';‘_j

- time show the shape the beam takes on when slip occurs at _::;i

E the joint. Frequency calculations show that the period o+ ;”-!

the response 1s at+tected by clamping pressure, but not by
the 1nmatial loading. tnergy loss calculations are presented af_ni

tor various clamping pressures.
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CHAPTEK 1

INTRUDUCT ION T

1.1 BACKGROUND

There has been an .ncrease 1n 1nterest in the
stability of large space structures due to the Strategic
: Defense Initiative (SDI). A desire exists to mount
h' sensitive equipment (tracking and reflecting devices) f q
externally on these structures. The rotation of these
) structures could cause vibrations to occur which, if :
E‘ unchecked, could significantly affect the accuracy of the ‘ ?T.
3 mounted equipment.

Space structures operate in an environment offering no

\o aerodynanic damping. In addition, the use of low mass and i]
all -welded construction methods, lacking sufficient inherent

demping, decrease the ability of the structures to reduce

r
- - ‘.."‘.‘ BRI

unwanted vibrations (19). Thus, expensive and complex

damping systems _. e needed to achieve the desired levels of

damping. However, friction damping is a method available to
passively damp vibrations in structures, thereby reducing zg‘
the need for these active damping systems.

Friction damping, the interfacial slip in the joints
of a structure, is the major contributor to the inherent “u;
damping of a structure. Usually over 90 percent of the
damping 1n structures takes place in the joints (2). Three
primary reasons are given for not relying on this mechanism
in the past. First, the small movements between the

1
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surtaces of the j)ocint can cause fretting corrosion, leading
to tatigue and possible failure of the joint or structure.
Second, by decreasing the stiffness i1n the )oint i1n order to
permit slip, a relative loss of static stiffness of the
structure 1s realized. Finally, and probably the most
influential reason, friction forces in the joint are non-
linear. It 15, therefore, difficult to determine the force
transmitted across the joint and to predict the effect on
the vibration response of & structure. As a result of these
disadvantages of friction damping, Jjoints are normally
clamped tightly to prevent interfacial slip. This decreases
the damping by the joints to a minimum (&).

The benefits gained by friction damping in joints can
no longer be overlooked. The disadvantages can be overcome
by improving the surface finish and applying joint damping
at selected joints, as opposed to all the joints. Careful
selection of joints where friction damping is obtained by
slip in rotation, but not in translation, need sacrifice
little static stiffness (4). Furthermore, conservative
results may be obtained by linear analysis (5). Therefore,
it may be feasible to increase the inherent damping in a
structure by allowing more friction damping than is pres-
ently allowed, thereby controlling the vibration response.
This technique can help to avoid complex, active damping
systems. Some of the advantages would be lower cost,
achievement of high damping, the ability to move resonant

frequencies, and the ability to use existing Jjointas (5).
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1.2 PURFOSE

The purpose of this thesis was to investigate
frictional damping effects 1n a beam with a rotational
Joint. The major thrust of this effort was to take an
existing finite element computer program, FEMID (15), and
apply friction damping to change the vibration response of
the physical model and thereby show the capability to

control the vibration response and resonant frequency.

1.3 General Approach and Assumptions

The structure that presented itself most readily to
serve as a physical model for this study was a two elesment
beam clamped at both ends with a joint located at the middle

node of the beam. A sketch of this set-up is shown in Fig.

i1.1a. In the static case, when the bwam was subjected to a
vertical load at the midpoint, the beam would deflect and a

moment would build at the joint dums to a frictional moment

opposing slip and forcing the slope to remain fixed at zero.
When the moment reached the value of the friction moment, ihif
any further increase of load would cause the joint to slip

and an energy loss would be realized due to the relative

........................




LA AEAATAA AT A A A S A At g8 el St Gl %2 A AIE 0 e A e die A IR A th Bl e e A SN A Al A d G Ae S B ans At (bl den And A Bl At AakSad sok Aad Anh A ~ul S ands e

rotation o+ the two i1ntertaces. A new displacement and
slope would b= obtained, dit+erent t+rom those o+ the totally ———
locked jJo1nt and the value o+ the moment at the joint would

equal the triction moment value. Figs. 1l.1b and c, show .

respectively the cases where the moment 18 less than the i;;:
triction moment and when the beam sl1ps because additional

lopad 1s applied once the friction moment 1s reached. in the

dynamic case, the loss o+ energy due to slip would be seen ;QT}
as a decrease 1n the ampilitude ot the vibrating beam +rom
cycle to cycle.

A literature search showed that interest in the t+ield
o+ +riction damping i1n Joints has been around for some time.
However, there is very ilimited vibration data available 1in
which +riction forces play a significant role (19). The ’?5'

number o+ variables associated with ¢riction damping made it ILED

dift+icult to predict, so 1t was avoided. But because of

Spl, the number o+ studies undertaken to predict the ettect e
of friction damping in jJoints should increase significantly.
lThrough the judicious use Df assumptions, the scope of the

problem can be narrowed so that a starting point can be ;t¥;

obtained.

lhe ability to predict or control the damping produced };ﬁ}

T

by partial slip between surtaces can be accomplished in the

——— e,
|.' A
lJ

laboratory on only very simple systems (14). For this Qﬁ;f
.-
U

reason, macroslip was assumed +or the joint under i1nvesti- N
ity

gation. In other words, when the )Oi1Nnt was slipping, the AN

total contact area would be slipping. This leads to the

4
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FIGURE 1.1a

TWO ELEMENT BEAM MODEL

FIGURE 1.1b BEAM WITH M < Maroas

FIGURE 1.1c SLIPPED BEAM
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next assumption regarding the clamping pressure. .Fi
The clamping pressure was applied such that it was ' d*;
evenly distributed across the contact area. I+ a bolt 18

used to apply the clamping pressure, then the pressure is at

a maximum near the bolt location and decreases as you go
away from 1t. The area near the bolt would be more rigid
and would resist slip more than the outer area. The
increased pressure near the bolt would mean that the
friction moment would be greater near the bolt, In order to

have a constant friction moment across the contact surface,

-l

which the macroslip assumption attempted, a& uniform clamping
pressure v s applied. Another asumption was required to
insure a constant friction moment. :;2

The friction force applied to the problem is propor- ifd
tional to the clamping pressure through the coefficient of
friction, . Since the clamping pressure is applied
uniformly over the contact area, the coefficient of friction
must be constant to pravide a constant friction force over
the entire area. This assumption of constants also carries
over to the time-dependent problem.

Since the solution of a vibrating beam 1s a time-
dependent problem, the clamping pressure and coefficient of
friction must be constant in time or the friction force will
vary. The first step is to find a solution for the constant
friction force or too many variables will be introduced to

solve the problem. Hence, the friction force is assumed to

be constant with time. This leads us to the physical beam




it o i St Bt i S A s A B Aan g Rl At _'_ .'.'F:'n".':".'_'.‘ Aafint et R e B/t e O St S el B S E Rt B LT —— Ty T g —r—y

model .

A simple beam mode! that 1% available 1s the tuler
beam. Ihe theory ot the Euler beam states that a plane
cross—section drawn perpendicular to the centerline ot an

unbent beam will remain perpendicular to the centerline

atter the beam bends (Y). ihe limoshenko beam does not R
require the cross-section to remain perpendicular to the
beam centerline and sO more closely approximates the exact
beam (¥). The dimensions of the clamped-clamped beam were : }j
chosen such that the results obtained +or the t+irst mode ’Fi
would closely approximate that of the Timoshenko beam.
Lonsequently, the simple thin—-beam ktuler model will give
adequate results +or the first mode.

tinally, a modit+ication had to be made to the clamped-
clamped beam model. A one-dimensional finite element pro- o
gram was used to model the physical beam and provide the lf.u
numerical analysis for the dynamics of the beam. The one- »ir
dimensional program did not allow +0r i1ndependent rotations

ot the elements at continuous nodes; it forced the slope at

the middle node to remain zero. but t+or damping to take
place, relative rotations had to occur at the node to dissi- Ffﬁ

pate energy. S0 the beam was changed by symmetry about the

Joint to a cantilever beam with an applied end moment. The

Mo

slope would be ti1xed whanever the moment was less than the

A

- S
trictional moment, and would be allowad to change whan the }k{

. LAt
% value o+ the moment reached the triction moment value. |Ihis isi

allowed the rotations required to calculats energy loss.

sl




CHAFIER 2

THEORY S

2.1 Coulomb bamping Theory

Coulomb, or dry friction damping arises whenever two
bodies are allowed to slide or rub against one another. For
any sliding to take place there must be a force acting which
overcomes the resistance caused by friction. The friction
force 1s paraliei to the surface and proportional to the

force normal to the surface. The classical law of sliding

-t A

friction states that this frictional force is independent of
the contact area and the magnitude of the velocity, as long
as sliding exists (9). The friction force opposes the
relative motion, and thereby continuously absorbs energy so
long as the relative velocity exists. The force of friction

is of constant magnhitude and as long as the forces acting

(namely, the inertia force and the restoring force) are S
sufficient to overcome the friction force, damping will :ﬁgf
continue. When the forces become too small, the damping igﬁt
d

Lagh

stops as sliding ceases.

This can be illustrated by the motion of the simple
spring-mass system of Fig. 2.1.

The mass is set into motion by pulling it in the
positive direction and releasing it. The ¢riction force
acts in the opposite direction of the velocity of the mass.

It is proportional to the force acting normal to the contact




F=uW=uMqg

FIGURE 2.1 SIMPLE SPRING-MASS SYSTEM

surface, in this case the wa2ight of the mass. The constant
of proportionality is the coefficient of friction, . This
constant depends only on the roughness of the sliding
surfaces. fhe force ot friction :1s therefore represented by
Fa = uW = umg (2-1)
The equation ot motion for this system can be written

as

mx + FasSgn(x) + kx = O (2-2)
where the symbol '"sgn' represents a function having a value
of +1 1+ % 1s positive and -1 1+f %X 1S negative. The
equation of motion tor this system is non-linear, but 1t can
be separated into two linear equations, one for the positive
velocity and one for the negative velocity (12).

mx + kx = -Fgq Xx >0 (2-3a)
mx + kx = Fq X <0 (2-3b)
fhe non-linearity consists of switching between the two

linear equations. The switching does not occur as an

explicit function of time, but is determined by the
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response. Theretore, 1t could occur at various times,
depending on the forcing function and the i1nitial
condaitions. This means the equation of motion must be
solved for one time interval at a time, depending on the

s1gn of .

If the mass 1s displaced initially in the positive
directic-, the velocit, will be negative at first, so the
fi1rst equation is considered. It can be rewritten in the

form
X + w%x = wifd (2-4)
where w2 = - {Natural Frequency of Vibration)

Fa
§, = -

k
The initial conditions are x(O)=x_ and % (0)=0 so the
solution is (12)

X(t) = (Xs = falCos(Wat) + 4 (2-5)
This represents harmonic oscillation and is valid for
0O 2t = ti, where t. is the time at which the velocity
reduces to zero and the motion is about to reverse. To find

the velocity the equation is differentiated with respect to

time to obtain

X(t) = —wn(Xo - fa)Sin(Wat) (2-6)
s0 that the lowest non-trivial solution satisfying the
initial condition is ¢.® %/w.. If x(t,) is large enough to
overcome the static friction, the mass will have a positive

velocity and then must satisfy the other linear squation of

10
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motion. Thus the following equation must be solved
‘x. + Nax = - w?\fd (2-7)

with the 1nitial conditions of x(t:)= —(x- — 2ta) and
X (t,)=0. {he solution 1s (12)

X(t) = (%o -3IfalCcOSiwat) — to (2-8)
This solution 1s valid for the values of t, 2 t = tz where
t=- 15 the value at which the velocity again goes to zero.
The value of t=> is found to be 2%/w~. The procedure 1s then
repeated for t > t-, until the motion stops. However, a
pattern is seen to emerge.

Over each half-cycle the motion consists of a constant
component and a harmonic component with the frequency equal
to the natural frequency of the spring-mass system, where
the duration of every half-cycle is equal w/w~. The average
value of the solutions switches between f. and —-fo and at
the end of each half-cycle the displacement is reduced by
2fo5 = 2umg/k. This leads to the conclusion that in coulomb
damping the amplitude decays linearly with time, not
exponentially as in viscous damping (12). A plot showing
the decay as a function of time for this simple system is
seen in Fig. 2.2. Fig. 2.2 also shows that the curve
oscillates about the values of f. and —-fo and if the
restoring force falls below this value, the block will stop
sliding at some position on either side of zero, depending
on the initial displacement.

One may associate coulomb friction with rotational

slip by looking at the force of sliding friction coming from
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l FIGURE 2.2 LLINEAR FRICTION DAMPING DECAY (12) -

v

a frictional shear stress at the contact area that is equal
to u« times the normal pressure. This gives an equivalent
result to the simpler cases, such as the sliding block
previcusly mentioned. This case aids in the solution of

maore complicated systems, such as curved contact surfaces or

non-uni1form pressure or velocity distributions (1Q).

l‘l

To show this case, assume a frictional moment arises

[ L S R A
. . : KR

trom the flat end of a circular rotating shat+t of radius R

being pressed against a plane surface with a total feorce N

R

(10) ., Also assuming a uniform normal pressure or compres-

J
si1ve stress on the contact area A, we obtain a unifeorm N
frictional stress cf magnitude (10) f;
. N uN e
3 Ve = - = o (2-9) ;
R A wR= o :_'-.:...
[
[ARAEN
which 15 everywhere i1n a direction normal to a radial line fonel
. -\_.:.
DN R
drawn from the center of the caircular contact area. From LT AN

: -

12

Fig. 2.3 1t is seen that the moment due to an annular
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element of width dr and area 2%rdr is

uN
dM = 7%2nr2dr = — 2urZ3dr (2-10)
wR=

FIGURE 2.3 FRICTION STRESS ON ROTATING CIRCULAR SURFACE (1&)

The total frictional moment is

2uN( R 2
M = r=dr = — uNR (2-11)

nR= 3

If u = O, the contact surface i1s said to be perfectly
smooth. If, on the other hand, « = *, a perfectiy rough
surface exists. The first case corresponds to the na clamp
case 1n which the friction force i1s zero. The second case
corresponds to the relative velocity at the point of contact
being zero and is referred to as the no slip case (10).

As an extension to this case, Richardson and Nolle
assumed that an external moment applied to a rotary joint is
transferred between the two surfaces by shear due to
friction (16). Fig 2.4 depicts the transfer at the friction

13
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interface. Also, the fricticen shear stress 1s considered
constant and occurs only in those regions of the contact

surface where relative slip occurs (16). As the

I Pressure

Frict on
nterface

FIGURE 2.4 TRANSFER OF MOMENT BY SHEAR DUE TO FRICTION (15)

applied moment is increased, slip begins at the outer edge
of the contact circle and extends inward toc a constant
restoring moment. Fig. 2.5 shows the slipped region for a

particular applied moment.

gy
VRN

FIGURE 2.5 SLIPPED REGION/DISTRIBUTION OF SHEAR STRESSES(164)

14
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The moment 1s applied from zero to a value of Muwax.
The 1nner bounding radius can be calculated from equilibrium

of moments.

K
M -SS 2nr =uPdr yields a> = R> - 3M/2wuf (2-12)
a
where P = Clamping Fressure

For gross sliding, the slipped region covers the
entire contact area (a = 0), so the moment for gross slip to
occur 1s

Maross = Z2%uPR>/3 (2~13)
For any applied moment below Maeross the relative slip is in
the microslip stage. At Maross, macroslip would be said to
to occur. The value of Meross Ccan be varied as a function
of clamping pressure. The low end of the macroslip region
occurs at low clamping forces and is known as the no-clamp
case. As the moment increases to Meross. the amount of
damping increases until Mowkosse is reached. Above Moross,

damping decreases in the microslip region until the clamping

L MACROSLL S mceosL\ P [

M = FRLCTION momENT
DAMPING DUE To SL\P
ENERGY

DISSIPAT (oA

M= 2__“;‘;&3 y\._z__.'*“;’(ﬂx-&)
NO CLAmP Poet T No suf
CLAMPING PRESSURE

FIGURE 2.6 DAMPING VS CLAMPING PRESSURE (11)
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pressure 1s so great that no relative slip occurs. This 1s
the no-slip case. Lazan shows the relationship between
damping and clamping pressure graphically in Fig. 2.6

Damping i1s maximized at same clamping pressure just above

that required to prevent gross slip (21). This 1s because

the entire surface undergoes slip and no more damping can

take place than when the friction moment is at a maximum.

2.2 Thin Beam Theory vs the Timoshenko Beam

Thin beam theory states that a cross—-section perpen-

dicular to the beam axis prior to beam bending will remain

perpendicular to that axis after the beam bends (9). The S
I U
LK) | L
05H L
S
O AN r:‘-':.n":‘
(QF ¢ o
('(‘2 |Z }clau '::
04- _:~
O : [ !
O
) -

LENATH (. (I

-— - - 12 - N

RADIUS O0OF GOGYRATION ’ I\ >\ [ el

A 12bh E*j

"‘, L 9

FIGURE 2.7 TIMOSHENKO BEAM VS THIN BEAM (9)
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Timoshenko beam does not require this to happen and

. therefore models the real beam better. In an effort to
estimate the amount of error thin beam theory would enter
into the problem, 1t was compared to Timoshenko theory.

Fig. 2.7 compares a non-dimensional frequency for the

Timoshenko beam vs the classical beam (thin beam). The
length to height of the physical beam model gives an L/r
value of 68. This compares guite well with the Timoshenko
beam for the first mode, as shown by the * in Fig. 2.7.
Errors may show-up for higher vibration modes, but the thin-
beam theory will be adequate for predicting the first

vibration mode.

2.3 Finite Element Theory for Time—-Dependent Problems

In time—-dependent problems, the undetermined

parameters are assumed to be functions of time and the

approximation functions are assumed to be functions of
spatial coordinates. Two stages of solution must be
undertaken, both involving approximate methods. First, the
spatial approximation must be considered and then the time
approximation. This procedure is known as semidiscrete
approximation (in space) (15). The spatial approximation
leads to a set of ordinary differential equations in time.
In structural dynamics, these equations quite often contain
second-order time derivatives of the dependent variables.

{; The spatial approximation forms the egquations of motion in

17
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matrix form as

[MI{X) + [KI{x) = (F) 0 <t < to (2-14)

3 where (M1 = mass matraix R
n [K] = gtiffness martix E&is
h {x) = displacement vector _L_:
- {F} = applied loads vector
] This equation must be further approximated to get a set of
algebraic equations which can then be solved. There are .
several schemes available for solving the above equation.
The most common one is the Newmark-Beta direct integration :
method (15). The Newmark—-Beta method approximates the first ;;;:

time derivative (x) and the function {x}, which is time

dependent, at the (n + 1)st time step (at= constant) as(135)
(X}rwz = {x3n + [UU=T) (X} + 7(X}neadat (2-15a)
(xIN+1 = {x}n + (XInat + [U§ = B) (XD} + B(K)naal(at)=(2-15b)

wh 2@ 7 and 8 control the accuracy and stability of the

scheme and subscript n shows that the solution is computed 3?33

at time t = t,. The values of 7 = 4 and £ = 4 are normally e

chosen because they provide for an unconditionally stable
system. This means that the size of the time step is 3if
goverened by the need for accuracy rather than stability.

This scheme, known as the constant average acceleration

"
.

method (15), is very valuable in computing the response of

systems in which damping is introduced externally because 3‘5

the method itself does not introduce any damping. Equations

« ¢
.
s

.
[

.
»
S .

(2-14) and (2~15) can be combined and rearranged to get (15) ;;TA

A A b

[KI{x2nes = (Flnea (2-16) e
| S5
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A
where (K] = (K] + anlM]

(Froes = (Froas + [MI1(Bolxdn + @1(x3n +az{x}n)
Given 1nitial conditions of {xlo, {Q}o, and {?}o, egquation
(2.16) can be solved repeatedly for {(x). I+ the initial
value of the acceleration is not given, which is usually the
case, equation (2-14) can be used to compute (Q} at t = 0.
After calculating {(x) at t.., = (n+l1)at, the first and
second derivatives (velocity and acceleration) of {(x) at

t~+1 Ccan be found by rearranging equation (2-15) (15)

(XFner = @ol{XInes = {X}n) = B1{X}n — @=z{X)}n (2-17a)

(X}ner = (XDn + @s{X}r + BalX}ras (2-17b)

where 8 = 1/08at) =1 4: = aocat a-x = (1/28) - 1
as = (1 - 7)at aa = 7at

Given initial conditions of {(x)o, {(x}o, and {x)o, equation
(2.16) can be solved repeatedly for (x> and its time
derivatives at any time t > 0.

Newmark—Beta is unconditionally stable, as previously
mentioned, which means the solution does not grow without
limit. However, if the right time step is not chosen the
results may be inaccurate. An estimation for the time step
is given by (13)

at = T/ (2-18)
where T.i~ is the smallest period of vibration given by the
problem. This assures not only a stable solution for any at
but also accuracy of results. The smallest period in the
clamped-clamped beam occurs when the joint is fully clamped.

The period was obtained from the unmoditied FEMID program.

- A




| SO Ai A A aal Al bt deg A 0 dhdl Aad Aok ol Joll Sk Mk gl s WP

The value was 0.0074074 sec. Substituting this number into

- Avvv-_.‘-:‘,v-'vv
.

Egn. (2-18), a at of 0.0023579 was computed. Therefore, any
value of at below this number would guarantee accuracy of
results. The value of at = 0.0001 was chosen for
calculation 1n the Newmark Beta method in an effort to
obtain i1ncreased accuracy.

Fig. 2.8 highlights the main steps of the Newmark Beta
time 1ntegration method. Fig. 2.9 compares the accuracy of
the Newmark Beta method with other numerical analysis
methods and the exact solution. The praoblem being solved in
Fig. 2.9 is a two element axial rod clamped at one end. The
top plot shows the axial displacement of the middle node and
the bottom plot shows the axial displacement of the node at

the free end. Notice that while the other numerical methods

display some form of amplitude decay, the Newmark Beta

method does not. However, Newmark Beta does exhibit some

.I period elongation, and this should be considered if accurate

8 frequency calculations are required.
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FIGURE 2.8 NEWMARK BETA INTEGRAT10ON METHOD

A. Initial Calculations
Form K, and M.

1
Initi1al1ze XoyXe, and Xo.

Select time step at, 7 and B (7 = %, B 2 (0.5 + T)=),

and calculate :
ac = 1/(Bat=) ; a, = 1/7(8at) 3 a= = (1/28)-1
ax = at(l-7) ; aa = 7at

A
Form the matrix K = K + aoM.

B. For esach time step
Calculate the effective loads at time t + at :
Feede = Feode + M{@oxe + @zXe + asXed
Solve for the displacements at t + at :

~ A
KXesAr = FesdAe

Calculate the accelerations and velocities at t + at :

(X ] (1)
Xesbe = Bol{Xesrbe = Xe) — AXe — axXe

. . ve (1]
XesAe ® Re + B83Xe + BaXe+Ae
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CHAMIER S

THE DAMFING MUDEL

3.1 THE BEAM IN SIATIC BENDING

lhe physical dimensions of the two element beam arrangement
can be seen in Fig. 3.1. However, because aof the
limitations ot the FEM1D computer program, the actual beam

model that was used in the computer analysis was a

—— vvr

cantilever beam with an applied end moment. The beam was
made of steel; the material properties and related

calculations to be used in the computer analysis can be

found in Appendix 1.

—"

O.0\UTm
1
L 0.5 m 0.0154¢ m
4 0.01777m f
—‘— - 0.0254m -
\

{.om

FIGURE 3.1 PHYSICAL BEAM DIMENSIONS
The computer program allowed certain boundary
condaitions to be fixed, so 1nitially 1t was assumed that no

slip would take place and the slope at the tip was fixed at

23
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; zero. As a vertical load was applied, a moment was
E - generated to keep the slope fixed at zero. If the value of
: Meross was not equaled, then no slip took place and the beam
E would behave as a normal clamped-clamped beam 1n bending.
i When the value ot the moment reached the value of MGROSS, 1
. the next increment of load would cause the joint to slip ?ﬂﬁé
R
because, due to friction, the joint cannot hold any more ﬁ&
. moment than the value 0t Maross. At this point, the - *J
! boundary conditions were changed and the restriction that
the slaope remain zero was removed. A moment equal to the
i value of Mcross wWas applied opposite to the direction ot
i 1mpending motion, and slip occured due to the change 1n
slope. A new value of displacement and slope were found,
b .’ different than the value for the clamped-clamped beam. Fig.
< ‘ 3.2 shows the shape of the beam and equation that 1s sotved

for the static beam where the moment does not equal Maoross.

4+

. M
w [ o
D LK -—
- (o] ™
-."‘
~
h-'
N FIGURE 3.2 UNSLIFFED STATIC BEAM
: Unce slip occurred, a new equation was solved because ot the
ﬁ: oS boundary condition change. This 1s seen in Fig. 3.3.
:',': 24
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FIGURE 3.3 SLIPPED STATIC BEAM e
The solution of the beam in either case can be verified by
superpositon once the value of the moment is known. The

equations aof superposition for beam bending by an applied

X
: load and moment at the tip of a cantilever beam are (7)
FL= ML= PL< ML
W =- — + — AND 8 = —— - — (3-1)
- 3E1 2E1 2€1 El
(X
where w = displacement
8 = slope
i P = applied loadq
M = applied moment
L = length
: £ = modulus of elasticity
1l = moment ot i1nertia
’
3.2 [HE BEAM IN DYNAMIL BENUING
Once the static solution was found, the displacement
; vector was used as i1nitial conditions for a dynamic problem.

The 1ni1tial boundary conditions are such that the slope 1s

25
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{1xed at the value calculated +rom the static problem. The
beam 1s then set i1nto motion by removing the initial
vertical locad. The beam begins to move with some velocity,
w= (see Fig. 3.4). Initially, the moment that was held at

i the joint, the value of Maross, 15 relaxed because of load
removal. However because the slope is not allowed to change
the moment begins to build again. The following

differential equation now applies

Mx + Kx = F (3-2)
where M = global mass matrix
K = global stiffness matrix
F = applied loads (F = {( 0, O 2"

Remember that the static equation was just

i ‘o kx = F (3-3)

' o The motion of the beam requires the inclusion of the
acceleration terms in the problem. 7This presents two new

‘ terms in the calculation of the moment to compare against

Merosse. The moment calculated was therefore
M = MasWz + MaaBz + Kaswz + KaaBz (3-4)
- where the displacement and acceleration vectors are obtained
by solving Eqn. (3-2) by the Newmark Beta method. Appendix 2

shows how the boundary conditions are applied to determine

which terms will appear in the dynamic moment calculation.
Now when this moment equals the value of Morosa, Slip Will
occur with the next incremental increase in the moment. It
can be seen that i1nitially gz is zero, but after slip occurs

an angular acceleration term will appear and figure into the

26
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moment equation. The n=w equation that must be solved once
slip accurs 1s
MX + kx = F (3-5)

where F = applied loads (F = { 0, Maross }').

Fi1g. 3.4 shows the conditions that exist once slip occurs.

FIGURE 3.4 DYNAMIC BEAM WITH éz <0
.. Once the slip mechanism 1s turned on, same method must
be available to turn 1t of+t. In traiction damping the
friction force acts opposite the direction of motion of the

system. In this case the motion 1s rotational, so the

friction moment opposes the angular velocity of the joint.
lheretore, the angular velocity should play some part in

monitoring when slip at the joint had stopped. When slip :};z
ceases, the angular velocity should be equal to zero. At 'f;'s

this point, the slope was fixed and the friction moment

removed. The beam would then begin to move i1n the opposite
direction and the process would begin again. Fig. 3.5 shows

this case. The moment at this point i1s positive, but 1t -

decreases with time until 1t becomes negative. When the ff
absolute value of the moment on this stroke equaled the %.n
"r <
27 SN
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value of Maxossy the slope was allowed to change and the
friction moment was applied in the opposite direction of the
motion. This 1s 1llustrated by Fig. 3.6. The process would
continue until the moment no longer equalled the value of

Meross and the beam would oscillate from then on with some

permanent slope. Fig. 3.7 shows the logic i1mplemented to

solve for the damping at the joint of a vibrating beam. The -1

. major madifications were made in the STRESS subroutine of ,.‘ i
the FEM1ID program (15). The actual Fortran code for this

subroutine can be seen in Appendix 3. . 1
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FIGURE 3.5 DYNAMIC BEAM WITH 8= = O
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FIGUKE 3.6 DYNAMIC BEAM WITH 9z > ©
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FIGURE 8.7/ LUGLIL UF IHE FRILUITIUN DAMFING MECHANISM

tor the 1nitial loading of Fig. 1l.1c, the flow of the
damping mechanism would be:

A. For each time step when not slipping
1. Lalculate Maeross
Meross = ZnubK>/3 = Lonstant
2. Lalculate M
M = MasWwz + Mastz + Kaswz + Kaabz

3. Lompare M vs Mgross

a. 1f M| 2 Meross o on to next time step
b, I+ ‘M| ? Moeross
l. Kemove +ixed siope condition
2. Apply tip moment equal to:
8. Moross 1+ M > 0O
b. ~Moross 1+ M < U

3. Go on to next time step 1n part B.

B. For each time step that slip 18 opccurring
1. |f‘|' ® Moross

L ]
2., Lheck angular velocity, 8=

a. l+m >0
1. 1+ é: < 0 o on to next time step
L]
2. 1§ 82 2 0
a. Fix slope at present vaiue (68> = Constant)
b. Remove tip moment

€. Go on to next time step i1n part A,
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b. It M <O .
1. 1+ g6 > 0 Lo on to next time step e

a. Fi1x slope at present value (8> = Lonstant)

b. kemove tip moment SR

c. Go on to next time step 1n part A.

.o d

Le
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CHAPTER 4 -
RESULTS i

4.1  THE STATIC BEAM o

The response of the static beam i1n bending was readily

calculated once the friction moment was obtained. The
method consisted of applying superposition when the value of

Meross wWas reached. The applied load and moment would then

{
Ve
»

gi1ve a displacement and slope at the end node. The values

for the the static problem were used as the i1nitial dis-~
placement vector for the dynamic problem. Since this is

where the interest lies, emphasis is placed on the results

of the vibrating beam.

4.2 THE DYNAMIC BEAM

1
e

.
o
.-
o
o

The beam was set into motion with the slope at the
Joint fixed by removing the initial load. When the dynamic
moment reached the value 0f Meross, the boundary condition
that kept the slope fixed was removed and a friction moment
equal to the value ot Meroes Was applied in opposition to
the value of the angular velocity. The joint was allowed to
slip until the angular velocity reached zero. 1hen the
slope was fixed at the value it had reached at that time and
the moment was removed. This process continued until the
slope remained fixed continuously and no more slip took

place. the values that were deemed important were

displacement, slope, and angular velocity. All three of
these quantities were plotted versus time to determine how

the beam model was responding as a function of time. Fags.

YEAAR TR

. e,
P
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4.1 through 4.4 are plots of the translational! displacements
versus time for various clamping pressures. Note how the
max1mum displacement decreases as the clamping pressure
increases for an i1nitial applied load of 10,000 N. The
maxi1mum displacement occurs at zero clamping pressure and
the minimum at the fully clamped case. At low clamping
pressures, damping takes place over a longer time period
because ot the small value ot Meross, wWhile at the higher
Clamping pressures, damping takes place +or only one or two
hal+-cycles.

Figs. 4.5 and 4.6 show plots of slope at the joint
versus time for two clamping pressures. At the lower
Clamping pressure, the slope was sesn to level off
periodically and then continue after 1t had been fixed for a
few time steps. This was confusing until the angular
velocity versus time plots were examined. These plots are
shown in +igs. 4.7 to 4.9.

The angular velocity versus time plot for zero
clamping pressure, Fig 4.7, exhibited an unexpected
response. Note that a high frequency response is superim-
posed on a lower frequency. It was determined that two
modes oOf vibration were showing on this plot. The lower
trequency trace was the first mode of the beam and the
higher frequency in between was the second mode due to the
rotation of the end of the beam. When the clamping presure
was 1ncreasad to H.0E06 N/m<, both modes were sesn to damp

out, as would be expected. The higher {frequency second mode

32
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damped out fairst, and the first mode then continued on

. because there was no structural or viscous damping modelled. i;&J

! Frequency was plotted as a function of clamping "ffj
- pressure and the lower clamping pressures gave lower

frequencies. As the clamping pressure was 1ncreased, the ;?;;é

beam became more stiff, and so the frequency increased. y

This 1s seen in Fig. 4.10. Note that the range of j

frequencies 1s bracketted by the values obtained for a ) :

E cantilevered beam at the low end and a fully clamped beam at ':'q

the high end.

The slope at which the joint finally locks up, the

el |

permanent set, is a function of the i1nitial load and the
clamping pressure. It can lock up at a positive or negative

slope. Figs. 4.11 through 4.13 depict w=, 8z, and éz versus

time respectively for an initial load of 10,000 N and a
clamping pressure of 9.5E08 N/m<., The permanent set, which
was a negat:ve slope for most of the previous runs, 18 now
set at a positve slope. The same effect could have been
achieved for a constant clamping pressure and varying
initial load. The beam then oscillates about some
equilibrium point other than zero. The equilibrium point
could also be either positive or negative, again based on
the initial conditions.

3 The shape of the beam was plotted as a function of
time. Figs. 4.14 and 4.15 show the shape of a fully clamped
Joint, so that the slope at the joint remains zero. Figs.

4.16 thru 4.18 are for a clamping pressure of 8.0E0&6 N/m=.
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s

Fully Clam;ed Beam
Initial Load is 10,000
Timestep 1s 0.0001 sec

I

FIGURE &4.14

Beam Shape vs. Time
First Half-Cycle
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o

fhe slope and displacement are seen to vary significantly

because the small value 0f Meross 15 reached almost

1immediately. Figs. 4.1%Y and 4.20 are for a clamping
pressure of 8.0EO8 N/m“. The displacement 1s damped a large
amount 1n the first half-cycle, and the remainder 1s damped

in the next half-cycle. The beam then vibrates with a fixed

slope of —-0.01018 rads at the jJoint.

Fig. 4.21 1s a plot of moment versus slope for a
moderately large clamping pressure of 8.0EOB N/m= and shows E:’:‘
a hysteresi1s loop for the damping taking place at the joint. f"ﬁu
I+ the joint were excited by a cyclic load, the loop would 7
be closed. Damping takes place on the horizontal lines of

the loop, where the moment is constant and the slope is

changing. This allows the snergy loss to be calculated by
multiplying the moment by the change in slope. Kemember
that before damping begins, the dynamic moment must equal
the gross moment. The program was unable to reach the gross
moment exactly, so some overshoot of the gross moment is
seen. These are the spikes just before the line turns
horizontal. OUne other spike 1s seen on the upper horizontal
line. This 1s a point where the angular velocity changed
sign and so the routine fixed the slope at the current
value. However, at the next time step the moment exceeded
the value of Merose, S0 the slope was freed and damping
continued. The loop starts at the far right and ends on the
i1nner vertical line. The value of Maross is NOt reached

after the first two damping cycles for the initial

52
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conditions given, so the moment var:i:es up and down the line "Qz'f

o Co
C which i1ndicates a constant slope of —-0.01018 rads. o 5‘1
|

lable 4.1 shows the percent of energy lost during the Z{Tfﬂ
e

first halt+-cycle and a full cycle for various clamping

pressures and an i1nitial applied load of 10,000 N, Note :
that the results for the first half-cycle show &n 1ncrease
1N damping as clamping pressure increases. But, the numbers

reach a maximum and then decrease for the damping done in

i

o

one cycleas clamping pressure i1ncreases. fhis 1s better

illustrated in the plot of Fig. 4.22.
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ihe +1ni1te element method 1 capablie 0t predicting the
amount o+ energy lost due to +riction damping at the joint
ot a2 s1mple beam structure. lt was able to calculate
slopes, displacements, velocities, and accelerations, as
well as the trequencies associated with them. Enough
1ntormation was obtained that the actual shape of the beam
could be plotted. The modified one-dimensional program

] provided data that appeared accurate despite the inadequacy
o+ the original program to handle the i1ndependent rotation
degrees of freedom at the jJoint. 1he problem was simplitied

i .! by the assumptions made, but the results have openad the
door tor continued investigation ot the friction damping
phenomenon.

| A higher mode of vibration was seen on the angular
velocity versus time plot, but the accuracy +or the
trequency 1s debatable because only one element was used.

i The use of only one element made the beam stiffer than it
really was, theretore the trequency of the second mode would
be higher than it should be. Thais could be corrected by

) using two elements. Higher modes would be introduced, and
their accuracy would depend on the number of elements used.

ihe errors encountered by not using smaller time steps

) and actually stepping over the values of Meross and the

angular velocity when turmning the damping mechanism on and
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ottt did not at+tect the results obtained. Ihe hysteres1s
loop shows that the triction moment was exceeded rather than
equaleda, but at the next time step the value at the joint 1s
the value of Meross. S50 the time step chosen was more than
adequate to give accurate results.

The displacement, w=, 15 sSeen to decrease as the
Clamping pressure 1ncreases. This correlates to the percent
energy loss t+or a half-cycle and a full cycle. 1he percent
energy loss for the first half-cycle increases as the
clamping pressure i1ncreases. However, 1t reaches a maximum
and begins to decrease as clampling pressure i1ncreases for a
full cycle.

The frequency 1ncreases as the clamping pressure
increases. This can be explained by the beam becoming
sti1fter and the period decreasing. ln other words, the beam
vibrates taster. FOr a given clamping pressure, the
frequency remains constant +or any i1nitial applied load.

The amplitude varies with the load, but the frequency does
not.

The accuracy of the results are unknown as no data was
available to compare with. However, the trends observed
indicated that the data obtained was a good first estimate

for the amount of friction damping.
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RECOMMENDAT 1ONS
This thesis has opened the door for many +ollow-on ::Tﬁ:
studies to be accomplished. As many questions as were
answered, many more new ones were asked. Some additional ‘
work that could be completed i1n this area is: N
1. A two-dimensional finite element program could be used '
to verify the results obtained by the modified ?

one—-dimensional program.

2. An investigation into the higher modes could be made RN

using more slements in the besam model.

3. The assumptions could be relaxed to allow more variables

to come into play, such asj

a. Allow the clamping pressure to vary from a maximum at

the point of application to some lesser away from the point -
of application. iiﬁf
o

b. Allow partial slip. This would mean the joint would 7u
MATHAS
always be in some form of slip once a break-away value was }ﬁf}
N
exceeded. ﬁ}ﬂ
.;;s\:..'\
e
=T
C. Allow the coefficient of friction to vary with time ggf
61 NN
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to simulate wearing of the contact surfaces.

LI
»
»
LI
.,

4. Finally, the problem should be accomplished e
experimentally to obtain some laboratory values to compare

against the numerical integration methods.

L
Ge o
:
-
;
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APPEND]X A
Beam 1s made ot steel
= 0.3 €==7sz7.1095 Kg/m- E = 2.0E11 N/m~

Area of cross—-section = bh = (0.012/m) (0.0Zb4m)
= 3,2298E-04 m~

QA = 2.5248689 Kg/m

1= (1/12)bh= = (1/1%) (0.012/m) (0.0254m) = = 1,7342976E-08 m*

El = 3468.5952 Nm=

Area of contact surface = wR= = % (.012/m)= = 5,067074k-04 m=

Morase = Z2uuPK>/3 = (1.28/7037E-~06 m=) (F N/m=) Nm
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ine ditterential equation t+or the dynamic problem consists

_ |
";A.'_’-\

ot the tolliowing terms: ::¢¢?
N,
N

— .o — 4 R LNCN

Miis Maiz My Nx:j wWa Kii Kiz Kax K:q Wa Fa "A“':

M=21 Mz22 Mzx Mzoa Ha K21 K2z Koxs Kza Y M, ’

+ < =
LXJd .
M=3s Ms= Mss Mza w2 Kzi1 Kxz Kxx Ksa W= =
L_D41 Maz Mas n44_- = F3 L_KA;: Kaz Kax KA; \32 M= - ‘.i

fhe clamped boundary conditions at the first node
(Wwy = H; = 0) allow the +ollowing simplification to be made:
Mss Msa| | W= Kxs Ksa| { w= Fz
s~ Maa ;:;2 Kax= ‘K44 Y= M=
Therefore, the moment required to compare against Meross 1S
Mz = Maswz + MaaBz + Kaswz + KaaBz

The displacement and acceleration vectors are obtained by

numerical analysis, the Newmark Beta method in this case.
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APPENDIX C

SUBROUTINE STRESS(NPE,NDF,IBEAM,IELEM,W0,ELX,N,NEM,IFLAG,NT,
*VBF,INITIAL,BX0,KICK,FORCE,R,FRICTION, ITEM, IBF,VBDY, IBDY,
*KOUNT,GF,GF1,GF2,T)

X.eeeeee..GLOBAL COORDINATE

XI...eoo..LOCAL COORDINATE

SF.¢ee....ELEMENT INTERPOLATION FUNCTIONS

GDSF......FIRST DERIVATIVE OF SF W.R.T. GLOBAL COORDINATE
GDDSF....SECOND DERIVATIVE OF SF W.R.T. GLOBAL COORDINATE
WO0...ees..COLUMN OF GENERALIZED DISPLACEMENTS
Weeeooess o INTERPOLATED GENERALIZED DISPLACEMENT
DW........FIRST DERIVATIVE OF W: DW/DX

DDW.......SECOND DERIVATIVE OF W: D(DW)/DX

NOTE: W, DW, AND DDW ARE COMPUTED AT NINE POINTS OF EACH
ELEMENT (DW AND DDW ARE NOT EXPECTED TO BE ACCURATE
AT THE NODAL POINTS OF THE ELEMENT)

—— — ———— > = —— ————— —— - P = ——— — — — — —— ——— - — —— - W W . = . = ———

OO0 O00000000000

: IMPLICIT REAL*8(A-H,0-2)

- COMMON/STRS/XG(18),W(18),DW(18) ,DDW(18) ,NBDY,NBF,B43,B44,

: *G43,G44,VT,VTI

(X COMMON/SHP/SF(4) ,GDSF(4) ,GDDSF(4),GJ
‘ DIMENSION  GAUSS(9),w0(4),ELX(4),VBF(11),IBF(11),VBDY(11),

*IBDY(11),GF(4),GF1(4),GF2(4)

. DATA GAUSS/-1.0D0,-0.75D0,-0.50D0,

>, *-0.25D0,0.0D00,0.25D0,0.50D0,

- * 0.75D0,1.0D0/

NET=NPE
- IF(IELEM .EQ. O)NET=4
- H = ELX(NPE)-ELX(1)
- DO 85 NI=1,9
s XI = GAUSS(NI)
) CALL SHAPE(XI,H,NPE,NET,IELEM)
NN=(N-1)*9+NI
XG(NN) = O0.5*H*(1,0+XI)+ELX(1)
W(NN)}=0.0
DW(NN)=0.0
DDW(NN)=0.0
DO 60 I=1,NET
W(NN) = W(NN) + SF(I)*W0(I)
- DW(NN)=DW(NN)+GDSF(I)*WO0(I)
- IF(IELEM .NE. 0)GOTO 60
" DDW(NN)=DDW(NN)+GDDSF(I)*W0(I)
60 CONTINUE
IF(IBEAM.EQ.0)GOTO 85
IF(N.NE.1.0R.NI.NE.9)GOTO 85
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55

75

50

B4
85

90

1IF(ITEM.GE,1)GOTO 55
ZGROSS=(2*FRICTION*3,14159*FORCE*R**3)/3
PRINT*, 'Z2GROSS= ',ZGROSS

Z=BXO*DDW(9)

PRINT* ! z= ',2

IF(Z.LE.ZGROSS)GOTO 85

NBDY=2

NBF=2

IBF(2)=4

VBF(2)=-2ZGROSS

IFLAG=1

GOTO 84
ZGROSS=(2*FRICTION*3.14159*FORCE*R**3) /3
PRINT*,' ZGROSS= ',2GROSS
2=G43*GF2(3)+G44*GF2(4)+B43*GF(3)+B44*GF(4)
PRINT*, ! z= ',2

IF(VT1.GT.0.0)THEN

IF(VBF(1).GT.0.0)GOTO 75
IF(ABS(2).LE.2GROSS)GOTO 84

GOTO 50

NBDY=3

NBF=0

IBDY(3)=4

VBDY(3)=W0(4)

GF1(4)=0.0

GF2(4)=0.0
VBF(1)=0.0

NBF=1

IBF(1)=4

VBF(1)=-2GROSS

GOTO 84

ENDIF

IF(VBF(1).LT.0.0)GOTO 75
IF(ABS(Z).LE.ZGROSS)GOTO 84
IF(Z.LT.0.0)GOTO 50

NBDY=2

NBF=1

IBF(1)=4

VBF(1)=2ZGROSS
PRINT*,'VBF(1)= ',VBF(1)
CONTINUE

PRINT*,'GO ON TO NEXT TIME STEP; NT,KOUNT =
RETURN

END

' ,NT, KOUNT
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